

Forward jets and forward-central jets at CMS

Andrea Massironi for the CMS collaboration

DIS2011

XIX International Workshop on Deep-Inelastic Scattering and Related Subjects 11-15 April 2011, Newport News, VA (United States)

Why forward physics: low x

Forward jets allow to probe x values as low as 10⁻⁵ region sensitive to non-linear QCD effects

$$x = p_{parton} / p_{proton}$$

$$d\sigma(pp \to jet) = pdf(x_1, Q^2) \otimes pdf(x_2, Q^2) \otimes d\sigma(qg \to jet)$$

$$x_2^{min} = \frac{x_T e^{-\eta}}{2 - x_T e^{\eta}}$$

$$x_T = 2p_T/\sqrt{s}$$

$$p_{T} \sim 50 \text{ GeV}$$

$$\sqrt{s} = 7 \text{ TeV}$$

$$\eta \sim 5$$

$$x_{2}^{\min} \sim 10^{-5}$$

Why forward physics: parton dynamics & VBF

First step to understand the topology of vector boson fusion Higgs production which is the key to understand EWSB

Where: CMS @ LHC

LHC Large Hadron Collider

Proton-proton collider $\sqrt{s} = 7 \text{ TeV}$ High luminosity, up to L ~ $2 \cdot 10^{32} \, \text{cm}^{-2} \text{s}^{-1}$ in 2010

CMS Compact Muon Solenoid

Large coverage calorimeter $|\eta| < 5.2$

Access a regime never investigated before

What: Forward Jet analysis

Inclusive Forward Jet Cross Section

Simultaneous production of central and forward jets

Inclusive Forward Jet Cross Section

Detector level cross section of forward jets

- N_{iets} is the number of jets in a bin
- L is the integrated luminosity
- ullet Δp_T and Δy are the tranverse momentum and rapidity bin sizes

$$pp \rightarrow jet + X$$

- Anti-k_T (R=0.5) jet clustering algorithm
- Single jet with $p_{T}>15$ GeV trigger
- Jet Identification criteria
- Fiducial acceptance $3.2 < |\eta| < 4.7$

Comparison with Pythia and Herwig+Jimmy full CMS Monte Carlo events simulation

The analysis procedure

Hadron level cross section of forward jets

$$\frac{d\sigma}{dp_T d\eta} = \frac{C_{unfold} \cdot N_{jets}}{L \cdot \Delta p_T \Delta \eta}$$

• C_{unfold} is the bin-by-bin correction factor (trigger efficiency, event clean-up, jet-ID cuts

and jet energy resolution)

MC Bin-by-bin unfolding

$$C_{unfold} = \frac{N^{MC} \left(E_{had}^{MC} \in bin \ i \right)}{N^{MC} \left(E_{det}^{MC} \in bin \ i \right)}$$

Ansatz Bin-by-bin method

Convolution of hadron level distribution with a gaussian smearing that simulates jet energy resolution and fit to data

$$f(p_T) = N_0 \cdot p_t^{-\alpha} \cdot \left(1 - \frac{2cosh(y_{min})p_T}{\sqrt(s)}\right)^{\beta} exp(-\gamma/p_T)$$

The analysis procedure: systematics

Experimental systematics:

absolute jet energy scale and PU ~ 20/30% p_{T} resolution ~ 6 % Correction factor (different MC) ~ 3% Luminosity ~ 4 %

Theoretical uncertainties:

Hadronization and UE (Pythia and Herwig) PDF uncertainty α_{ς} variation Renormalization and factorization scales Maximum envelope

The results

Within the current experimental and theoretical uncertainties, perturbative calculations reproduce globally well the measured forward jet cross section

$$\frac{d\sigma}{dp_T d\eta} = \frac{C_{unfold} \cdot N_{jets}}{L \cdot \Delta p_T \Delta \eta}$$

Inclusive jet cross section measured at forward pseudorapidities (3.2 < $|\eta|$ < 4.7), fully corrected and unfolded

Comparison to various hadron-level theoretical predictions

- [♂(Data)/ ♂(Theory)]

Simultaneous production of central and forward jets (INFN)

- Anti-k_T (R=0.5) jet clustering algorithm
- Di-jet with avarage $p_T > 15$ GeV trigger
- Central jet : |η| < 2.8
- Forward jet: $3.2 < |\eta| < 4.7$

One event is characterized by the presence of two jets: the hardest one in the forward region and the hardest one in the central region

$$\frac{d\sigma}{dp_T^{central}d\eta^{central}} \underbrace{\frac{d\sigma}{dp_T^{central}d\eta^{central}}}_{\frac{d\sigma}{dp_T^{forward}d\eta^{forward}}} \underbrace{\frac{d\sigma}{dp_T^{forward}d\eta^{forward}}}_{\frac{d\sigma}{dp_T^{forward}d\eta^{forward}}}$$

Detector level cross section

Detector level cross section of forward / central jets

Comparison with Pythia and Herwig full CMS Monte Carlo events simulation at detector level

The analysis procedure

Hadron level cross section of forward / central jets

$$\frac{d\sigma}{dp_T d\eta} = \frac{C_{unfold} \cdot N_{jets}}{L \cdot \Delta p_T \Delta \eta}$$

Reweighted MC Bin-by-bin unfolding

Bin-by-bin correction factor \rightarrow take into account for detector effects

Monte Carlo spectrum at hadron level reweighted → overlap to the data at detector level

Bin-by-bin unfolding coefficients
$$C_{unfold} = \frac{N^{MC} \left(E_{had}^{MC} \in bin \ i \right)}{N^{MC} \left(E_{det}^{MC} \in bin \ i \right)}$$

Systematic due to bin-by-bin unfolding

Envelope of correction factors from different MC

The analysis procedure: systematics

Experimental systematics:

absolute jet energy scale $\sim 25\%$ p_T resolution and unfolding method $\leq 5\%$ PU (1 or more than 1 Primary Vertex) $\sim 5\%$ Luminosity $\sim 4\%$

The results

$$\frac{d\sigma}{dp_T d\eta} = \frac{C_{unfold} \cdot N_{jets}}{L \cdot \Delta p_T \Delta \eta}$$

Comparison to various hadron-level theoretical predictions

Some differences in p_T spectra due to the request of simultaneous production of a jet in the forward region and one in the central region

 $1-d^2\sigma/dp_{T}d\eta^{\dagger}(data)/d^2\sigma/dp_{T}d\eta^{\dagger}(MC)$

The results (2)

Comparison to various hadron-level theoretical predictions 1 - ratio between measured cross section and MC

Good MC simulations

- Herwig+Jimmy
- Powheg+Herwig

Herwig++

HEJ

1-d²ơ/dp₊dη^f(data) / d²ơ/dp₊dη^f(MC)

The results (3)

Not fair MC simulations

- Pythia
- Powheg+Pythia
- Cascade

Forward: low p_T jets

Central: normalization

- Luminosity collected 3.14 pb⁻¹ in pp at $\sqrt{s} = 7$ TeV CMS LHC
- Forward jet production:
 - Inclusive forward jet production in the p_{T} [35-150] GeV/c and 3.2 < $|\eta|$ < 4.7
 - Perturbative calculations reproduce globally well the measured forward jet cross section
 - With decreased systematics \rightarrow low x test
 - Production of one **central** and one **forward** jet, p_T [35-150] GeV/c and $|\eta| < 4.7$.
 - Some calculations not in agreement with data

Event selection and Jet identification criteria

Event selection

- Beam halo event veto
- Beam scraping events veto
- Primary vertex with ≥ 10 tracks with |z| < 24 cm

Jet-ID

Remove unphysical energy deposit

- HF noise removal
- $\bullet \ n^{\rm hit} > 1 + 2.4 (lnp_{_T}{^{\rm raw}} \ \text{-}1) \ \ in \ 3.0 < |\eta| < 3.8$
- $n^{hit} > 1 + 3(lnp_{T}^{raw} 1)$ $in |\eta| \ge 3.8$
- $0.6 + 0.05 \text{ (max(0, 9 lnE^{raw}))}^{1.5} > \alpha_{LS} > -0.2 0.041 \text{ (max(0, 7.5 lnE^{raw}))}^{2.2}$ where α_{LS} is the fraction of electromagnetic component of the total jet energy